
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-7, NO. 6. NOVEMBER 1985 721

Describing a Robot’s Workspace Using a Sequence of
Views from a Moving Camera

TSAI-HONG HONG ANU MICHAEL 0. SHNEIER

Absfmct-This correspondence describes a method of building and
maintaining a spatial respresentation for the workspace of a robot,
using a sensor that moves about in the world. From the known camera
position at which an image is obtained, and two-dimensional silhouettes
of the image, a series of cones i s projected to describe the possible po-
sitions of the objects in the space. When an object is seen from several
viewpoints, the intersections of the cones constrain the position and size
of the object. After several views have been processed, the represen -
tation of the object begins to resemble i ts true shape. At all times, the
spatial representation contains the best guess at the true situation in
the world with uncertainties in position and shape explicitly repre -
sented. An octree i s used as the data structure for the representation.
I t not only provides a relatively compact representation, but also allows
fast access to information and enables large parts of the workspace to
be ignored.

The purpose of constructing this representation i s not so much to
recognize objects as to describe the volumes in the workspace that are
occupied and those that are empty. This enables trajectory planning to
be carried out, and also provides a means of spatially indexing objects
without needing to represent the objects at an extremely fine resolution.
The spatial representation i s one part of a more complex representation
of the workspace used by the sensory system of a robot manipulator in
understanding i t s environment.

1. INTRODUCTION

A robot moving about in a fixed volume, such as the space above
a worktable or conveyor, needs to know where objects are located
and which objects occupy each filled volume. To do this, it must
build up a description of the space. The proposed method involves
using sensed information acquired from arbitrary but known loca-
tions to construct the spatial representation incrementally. This is
accomplished by projecting the image resulting from each view into
the world, and intersecting the views in the following way.

Each object (connected component) in the image projects into
the world as a “cone” with i ts tip at the center of focus of the lens,
and i ts cross section defined by the boundary of the component.
The background projects as a cone bounded by the sides of the
image with various holes in it for the objects. When two images are
acquired from different viewpoints, an object appearing in both im-
ages is constrained to l ie in the intersection of the cones from each
viewpoint. Empty space in either view projects as empty space,
while parts of the workspace that have not been seen are explicitly
declared to be unknown. The aim is to represent only as much as
is known about the workspace at all times. If an object has only
been seen once, i t s position can only be constrained to lie within
some cone. If i t has been seen many times from different view-
points, then not only wil l i ts position be more tightly constrained,
but so wil l i t s shape. Eventually, the whole workspace should be
represented in a way that closely approximates its true state.

The representation chosen for implementing this scheme i s an
octree. Unlike earlier work on this problem [2), a single octree is
used to represent the whole workspace instead of having a separate
representation for each object. The octree is a hierarchical rep-
resentation based on successive, uniform decompositions of a cube
([4], 161, and [8]). Imagine a cube enclosing the robot’s workspace.

Manuscript received October 15, 1984; revised April 5, 1985. Recom-

The authors are with the Robot Systems Division, National Bureau of
mended for acceptance by S. L. Tanimoto.

Standards, Gaithersburg, MD 20899.

Fig. 1. Objects enclosed within a cube, and the octrer representing the
volunre of the cube.

I f the whole volume is uniform (filled or empty), then the single
cube describes the volume adequately. I f parts of the cube are filled
and other parts are empty, then the cube i s split into eight octants
and each octant is examined for uniformity. The splitting process
continues until each (sub-) octant is uniform or until a resolution
limit i s reached. The set of cubic volumes can be organized into a
tree with uniform volumes as leaf nodes, and nodes that must be
split as branch nodes (Fig. 1).

11. ALTERNATE APPROACHES

Approaches to constructing the octree from a sequence of two-
dimensional views can be divided into two major categories. The
first i s characterized by projecting each image into the volume oc-
cupied by the tree, while the second involves projecting the nodes
in the tree into each image. Both approaches were studied with the
conclusion being that it i s more efficient to project the octree nodes
into the image plane because the cubes always project as convex
shapes.

The most obvious way of constructing the octree is to take each
component in an image and project it into the tree. On closer anal-
ysis, however, it i s not obvious how to do this. Consider the general
case in which the image plane is arbitrarily oriented with respect
to the octree and the cones expand into the octree under perspective
projection. There i s no direct relationship between regions in the
image plane and cubes in the octree. In addition, the resolution of
the octree cannot be measured in pixels in the image because the
pixel size i s a function of the camera’s position, while the resolution
of the lowest level in the tree i s fixed. Ray casting i s not feasible
because individual pixels also expand into cones, and the same dif-
ficulties arise. Attempts at decomposing the image into regions that
are meaningful in terms of the octree lead to the approach of pro-
jecting nodes from the tree into the image. This i s because the shapes
that are meaningful in terms of the octree are precisely those shapes
that result from projecting the cubes into the image. This approach
is discussed in detail below.

An alternative is to project the image into a series of planes par-
allel to one of the coordinate’s axes of the octree, at depths corre-
sponding to the sizes of nodes at various levels in the tree (Fig. 2).
This involves deciding which axis is most appropriate for a partic -
ular projection plane, and pcrforming a large number of projec -
tions. A method that is less complicated makes use of the approx-
imation of the boundaries of components with straight line seg-
ments. These segments project as planes into the octree, and con-
vex sets of half-spaces defined by the planes define the cones. Each

0162-8828/85/1100 -0721$01.00 0 1985 IEEE

722 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-7, NO. 6. NOVEMBER 1985

Fig. 2. Projections of an image into planes parallel to one of the coordinate
axes of the octree.

cube in the octree i s also defined by a set of planes, and the inter-
sections of these planes with each surface of the cones specify
whether or not to split a cube into octants, or if it i s an object or a
background leaf.

Unfortunately, this method is very time consuming, although
there arc fast algorithms for determining if a surface intersects with
a cube 131. A way of possibly speeding up the process would be to
replace the sets of planes with smaller sets of more complex sur-
faces. The method described by Field and Morgan in 131 allows a
decision to be made about the intersection of a second-degree
polynomial with a cube. The problem with this approach i s that i t
requires that the image cones be split into subregions that are ac-
curately described by second-degree polynomials (at the very least
into convex regions). In the worst case, the method for detecting
intersections still involves the solution of a number of equations,
and was found to be too slow for practical applications.

Comba [I]gives a more general technique for finding whether
or not a set of convex objects bounded by some set of surfaces has
a common intersection. H is approach is to define a single “pseu-
docharacteristic function” that is less than zero only in the regions
where all the objects intersect. The approach relies on a descent
procedure to find the minimum of the function, which i s an ap-
proximation to the region of intersection. Comba points out that,
for the case in which all surfaces are planes, the problem reduces
to a linear programming problem. It seems impracticable to have to
solve such a problem at each node in the octree for each object cone
(although the special orientations of the cube faces might simplify
the problem slightly).

The approach finally selected uses the alternative strategy of
projecting the cubes from the octree into the image. It allows use
to be made of the fact that cubes always project as convex regions,
and can be made efficient by using lookup tables. The algorithm is
described in the next section.

111. THE ALGORITHM

Assume that the octree has been created from an initial root node.
The leaf nodes of the tree can have one of three kinds of labels. A
node is labeled “background” if the volume i t represents is known
to be empty. It i s labeled “object n” if i t may contain object n. and
i t i s labeled ‘‘unknown” if it has not been seen or was within a cone
for an object that i s known not to extend into the region. (Note that
the label “unknown” is treated exactly the same as that for an ob-
ject; it i s differentiated only to emphasize that the contents of the
region have not been seen.) While branch nodes are also restricted
to the three kinds of labels, each branch node can store labels for
several objects if all the objects intersect with its volume.

The input to the octree intersection algorithm consists of a two-
dimensional image, a set of the corner points for each object (com-
ponent) in the image, and information about the position of the
camera in relation to the three-dimensional volume represented by
the octree. The two-dimensional image has each connected com-
ponent labeled with a unique identifier. This makes the intersection
tests below particularly easy because i t is only necessary to project
a point into the image and check the identifier of the corresponding
pixel to decide if there is an intersection. The corner information

is used to approximate the boundaries of objects for use in defining
the cones.

The method involves first deciding which of the cubes in the oc-
tree intersect with the cone defined by the bohndaries of the image
and the center of focus of the camera. This cone cxtcnds forward
from the c a n m a into the volume represented by the octree. If no
cubes (nodes) in the octree intersect with this cone (i.e., ifthey are
behind the camera, or OR to one side), then there i s nothing to do.
Otherwise, some cubes might intersect with the image plane, so
that they are partly in front of the camera and partly behind it (i f
the viewing point is inside the volume represented by the octree).
I n this case, these cubes are split and the same tests arc applied to
their children. Those cubes that are within this limiting cone might
potentially intersect with cones defined by the objects in the image.
Further anlaysis i s required in these cases. In essence, this pro-
cessing requires finding intersections between each cube and the
cones for the individual objects (and the background). For effi-
ciency reasons, the intersections are found by first using a number
of-quick tests and then, if necessary, performing a complete inter -
section analysis. The procedure involves projecting each cuhe into
the image plane, and al l tests arc performed in that two-tlimcn -
sional space.

For each image, the following tests are performed on each octant
in the tree.

I) If the octant i s behind the image plane, or off to one side.
then ignore it.

2) I f the octant contains the image plane, then split it into sub-
octants so as not to process those parts of the octant that are be-
hind the image plane, and perform these tests recursively on each
octant.

3) I f neither of cases I)and 2) occur, there may be some inter -
section between the node and the cones projecting out from the
image plane. Instead of projecting the cones out into the tree. how-
ever we choose to project each cube into the image plane.

To project a cube, it i s necessary to identify the vertices that are
visible from the camera’s point of view. A lookup table i s used for
this purpose. The table i s constructed by considering a set of vol-
umes surrounding a cube. These volumes are defined by extending
the plane faces of the cube, giving rise to a set of half -spaces (Fig.
3). Any viewpoint falls into one of these volumes, which uniquely
specifies which vertices are visible. Since the position of each cube
i s known in world coordinates, and the position of the camera i s
also known in world coordinates, i t i s easy to find their relative
positions, and so determine from which surrounding volume the
cube is being viewed. The vertices are transformed using the world -
to-camera transformation which i s one of the inputs to the algo-
rithm. This projects the cube into the image plane. Now a set of
tests i s applied to the projection to decide on a label for the cube.
The first tests are quick checks. I f they succeed. they save a lot of
effort in the interpretation. However, i f they fail, a more conlplctc
analysis must be performed. The tests. in order of application, are
as follows.

a) Check to see if some of the corners of the projection of the
cube are inside an object, and some are outside (Fig. 4). If so, store
the label attached to the object at the node in the octree correspond -
ing to the cube, and repeat the test on the next object. After testing
al l the objects and adding the necessary object labels to the node,
split the node and apply the algorithm to its children recursively.
Note that the only objects in the image that need to be intersected
with the projected cube are those that intersected with i t s parent.
(Hence, the need to find al l intersections.) At the lowest level in
the octree, a special procedure is needed to decide i f a node in the
tree intersects with an object. This i s because the resolution in the
tree is lower than that in the image, and i t is possible for parts of
more than one object to appear in a leaf node. This i s described
further below.

b) Iftest a) fails (as in Fig. 5). then check the corners of each
ohject that intersected with its parcni against thc projection of thc
cube. If any corner of an object i s inside the cube. label the cor-
responding node in the tree with the name of the object. I f the test

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL PAMI-7. NO. 6. NOVEMBER 1985 723

2

I

Fig. 3. The six plane faces of a cube divide the surrounding space into 26
half -spaces.'Let V I be defined by planes ADEH, BCGF. ABEF, and
DCGH. Then, from any viewpoint within VI , the corners E, F, G, and
H a r e visible.

Fig. 4. An exanlple in which some of the corners of the projection o f a cube
are inside a region. and some are outside.

Fig. 5. An example in which some corners of an object l ie within the pro-
jection of a cube.

Fig. 6. An example in which no corners of the projected cube lie within an
object, and no corners of the object l ie within the cube.

succeeds for any of the objects, split the cube and repeat the algo-
rithm on its children.

c) I f both tests a) and b) fa i l (as in Fig. 6). then one of two
further tests is performed depending on the size of the cube being
projected (i.e., the level in the octree).
i)If the cube i s small enough, each boundary point on i ts pro-

jection is checkcd to see if it i s inside any of the objects that inter-
sected with its parent. The checking is done using a binary search,
continuing until all points on the edges have been tested or until an
edge point is found to intersect an object. In the latter case, the
object label i s added to the node and the node i s split into octants
as above. The intersection test i s simple. The pixel in the image
addressed by the coordinates of an edge point is examined, and if
i t is an object point there is an intersection otherwise there is not.
ii) If the cube i s larger than some threshold, the boundaries of

each object are checked for intersection with the boundaries of the
projected cube. When an intersection i s found, the corresponding
label is added to the node and it is split as above. The intersection
algorithm is similar to that described in Pavlidis [7], except that
some simplifications can be made because only the existence of an
intersection need be discovered, not i ts actual location.

d) I f all the above tests fail, then the cube is either entirely wihin
an object or entirely outside all objects. These cases can be distin -
guished using the results of test a) [given that tests b) and c) have
already been performed]. I f the cube is outside al l objects. i t is
labeled as a background leaf node. Otherwise, the node i s a leaf
node for the object in which it lies.

After the first images have been projected, branch nodes may
have several labels while leaf nodes stil l have only one. As new
image cones are projected, the information must be updated. Two
procedures are followed for updating the labels at a node, one for
leaf nodes and one for branch nodes.

For leaf nodes, the labeling is straightforward (see Table I).I f
the current view (the set of cones arising from the current image)
does not include a node, the node retains whatever label it had bc-
fore. I f the current view interprets a node as background, the node
i s labeled background. If the label at the current node agrees with
the label assigned from the current view, there is again nothing to

do. Otherwise, there i s a conflict. I f the leaf nodc i s at the highest
resolution, the node can be labeled as one or the othcr object ac-
cording to what percentage of the node is filled by the projcction
from the current view, or depending on the color of the proicction
of the center of the node. For larger leaf nodes. both lahels can be
retained with confidences related to how often they have been con-
firmed, or adjacent leaf nodes can be examined to establish a ma-
jority opinion.

Branch nodes are somewhat more complicated because of the
possibility of affecting whole subtrees when making a decision about
a node (see Table 11). I f the new information confirms that the node
i s a branch node, al l that needs to be done is to add the labels of
any new objects found within the volume to the set of labels at the
node. I f the new information interprets a node as a leaf node. then
the action to be taken depends on what kind of leaf node i s hypoth-
esized. If the new label is background, then the branch node is
converted to a background leaf node and all i ts children are erased.
If the new information says that the node should be an object leaf
node, some further interpretation i s necessary. If the object label i s
not among those already known to be within the corresponding vol-
ume, it must be added to that list. The extra processing described
below arises because of the nature of the intersection process. It i s
performed if the new information interprets a node as an unknown
or an object.

Every branch node contains a l is t of all objects in its volume.
From two views, an object i s constrained to l ie in thc intcrsection
of the two resulting cones (and to regions visible in one view but
not in the other, but this situation is handled automatically by the
algorithm). To be safe, regions in cones that are labeled with the
object name but do not appear in the intersection, are labeled un-
known. This takes care of the possibility that another object is in
front of, or behind the object, and totally contained in its projected
cone. I f the old information in the tree says that the objcct appears
in a volume, but the new information does not, then the leaf nodes
in that volume are labeled unknown, while branch nodes have the
object's name deleted from their l ist of labels.

All the processing of the image and the updating of the tree can
be done in a single pass, with new labels replacing old where ap-
propriate and al l cones being simultaneously projected. At every
branch node, a check is made to see if all the children are leaf nodes
with the same label. Such nodes are merged into their parent which
becomes a new leaf node.

IV. DISCUSSION

The problem of constructing a description of an object from a
number of views has a long history. Almost all previous work has
been concerned with constructing descriptions of single objects,

724 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-7. NO. 6, NOVEMBER 1985

TABLE I
THE LABELING PROCEDURE FOR LEAF NODES IN THE TREE

Label from Previous
Current View Label New Label

Unknown (anything) Previous Label
Background (any thing) Background
(anything) Background Background
(anything) Unknown Current Label
Object X Object X Unchanged
Object X Object Y Depends on the

Relative Confidences

TABLE I1
THE LABELING PROCEDURE FOR BRANCH NODES IN THE TREE

Node in Currcnt
Node in Old Tree View New Node

Branch Branch Branch
Background Leaf Branch Background Leaf
Other Leaf Branch Branch
Branch Background Leaf Background Leaf
Branch Other Leaf Branch

however, and not with describing a whole scene. There are a num-
ber of simplifications possible when describing objects that are not
applicable to the case of describing a scene. For single objects, a
coordinate system can be defined that i s appropriate for the object,
and the data representation can be tailored to the object. The prob-
lems of occlusion that arise are only those of self occlusion which
has not usually been considered. There are no possibilities of touch-
ing objects, nor of ambiguities of interpretation.

Early work was performed by Underwood and Coates [9]. They
constructed descriptions of convex polyhedral objects in terms of
surfaces, edges, vertices, and connectivity. An object was placed
on a turntable and a succession of images was acquired, with the
requirement that there be some overlap in the surfaces visible in
successive views. The common surfaces were then matched and the
new surfaces added to the graph describing the objects The result -
ing description accurately represented the shapes of the objects that
were scanned.

More recently, Martin and Aggarwal [SI describe an algorithm
to construct a description of an object fmm multiple two-dimen-
sional views by projecting cones into an object -centered coordinate
space. They used parallel projection and constructed a represen -
tation, called a volume segment representation, by projecting the
cones arising from each view into each of the coordinate axes in
the object space. This technique could be applied to the more gen-
eral problem of describing a scene, but the representation would
probably require much more space. It i s similar to the approach of
projecting each image into a series of planes parallel with the octree
coordinate system and then constructing the intersections.

Connolly [Z] describes a system that uses a set of range data
images to construct an octree describing an object. H e constructs
a quadtree description from each image and projects the quadtree
blocks, using parallel projection, into the octree. H e makes the as-
sumption that quadtree nodes are directly comparable to octree
nodes, implying a fixed distance between the camera and the octree
origin, and constructs labels for octree nodes in a manner very sim-
ilar to that described in this correspondence. H is procedure appears
much slower than that described here (ten minutes per range im-
age), however, and i s less general than our method.

A number of problems can arise due to difficulties in accurately
positioning and calibrating the camera, and because of noise in the
images. The current calibration reduces the measured positioning
errors of objects to about 2 mm at a range of I m (using a technique
of matching object features to models to compute the object’s po-
sition in camera coordinates, and then transforming from camera

to world coordinates). This i s due to the angle subtended by one
pixel at that range, and i s adequate for the relatively coarse spatial
representation for which the octree i s constructed. Periodic recal -
ibration of the camera and robot arm are necessary to ensure that
errors are kept small. This can be done on the fly by observing
fixed calibration points in the world.

The problem of errors due to noise in the image i s perhaps more
serious. Noise that makes object appear larger, or introduces spu-
rious objects i s not a problem because subsequent views should not
produce the same noise patterns. Noise that increases the size of
the background, however, is more of a problem because regions
labeled background remain background in subsequent views, even
if later views show them to be filled. Projecting recognized objects
into the tree from their geometric descriptions can alleviate this
problem, as can algorithms that deal with moving objects in the
tree. Currently, however, we are considering a scheme where evi -
dence about the contents of a node can accumulate and eventually
change the label at the node after a sufficient number of views in-
dicate that the label i s incorrect. This can be implemented with no
basic changes in the algorithm described above.

The main advantages of using an octree for representing spatial
information in a form suitable for navigation, and for spatially in-
dexing objects, are i ts relatively compact representation and the
ability to rapidly index and modify any part of the tree. Trajectories
can be directly represented in the tree and, in the process of their
construction, collisions can be easily discovered. For controlling a
robot, it is also useful to feed small portions of the path to the con-
troller, and this can be done simply by siepping through the nodes
in the tree in the correct order. The sizes of leaf nodes also give an
indication of the amount of error allowed in the trajectory before
any collisions occur.

The algorithm described above i s st i l l not as efficient as i t could
be. A major reason is that each cube is projected independently
into the image. This means that each vertex may be projected up
to eight times, and the intersection test performed eight times on
the same point (eight cubes meet at each vertex). By remembering
which vertices have been projected, and what the results were of
their intersections, significant savings could be obtained (at the cost
of some extra bookkeeping). Another source of inefficiency results
from not taking advantage of occlusion information. A decision
made about a node in the tree that occludes other nodes from a
particular viewpoint is also valid for the occluded nodes. Thus, the
projection of those nodes need not be performed although they must
st i l l be updated.

V. EXAMPLE

For the example, three pictures of a rectangular block were taken
from three different positions. The position of the camera was not
known exactly but was computed using a method based on fitting
features from each image to a model of the object and then com-
puting the object -to-camera transformation. There i s thus some un-
certainty about the exact location of the object and the computed
position of the camera for each image.

Figs. 7, 8, and 9 show the three views of the object, and the three
cones arising from projecting these images into the octree. Fig. 10
shows the result of intersecting cones from the f i r s t two images,
giving rise to a new cone in the octree that constrains the location
and shape of the object: Fig. 11 shows the result after intersecting
the cone in Fig. 9 with that in Fig. IO. I t can be seen that the shape
of the cone in the tree is converging on the shape of the three-
dimensional object that i s being imaged. In this example, the pro-
cess could clearly be continued until the exact shape and position
of the object were recovered (Fig. 12). In general, this i s not true,
either because of occlusion problcms or because of concavities in
the objects. Some of these problems can be overcome by vicwing
the objects from special positions, or by using a range sensor. but
there exist objects that cannot be completely and accurately dc-
scribed using this technique. For thc purposes for which this algo-
rithm was developed this i s not a scrious problem, both because
complete descriptions of recognized objects are available and can

lEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-7. NO. 6. NOVEMBER 1985

Fig. 7. Top: The two-dimensional image of a rectangular parallelepiped.
The view is almost straight down. Bortom: The cone projected into the
octree from this image.

Fig. 8. Top: The image of the rectangular parallelepiped from one side.
Boltom: The cone projected into the octree.

be projected into the octree and because the representation i s not
used for describing fine details of the shapes of objects. Note that
there i s no requirement that the objects in the world have surfaces
parallel to the coordinate axes of the cube. This simply makes the
example pictures easier to understand.

Projecting and intersecting a view resulting in 1500-2000 object
leaf nodes currently takes under 3 min on a VAX 11/780. Custom
hardware being constructed to perform the matrix manipulations
for the projections is expected to very substantially reduce this time.
I t i s also expected that simply using a dedicated microprocessor and

125

Fig. 9. Top: A third view of the object. Bortom: The cone projected into
the octree.

Fig. 10. The result of intersecting the cones arising from the images in
Figs. 7 and 8.

/
/

Fig. II. The result after intersecting the cone in Fig. 9 with that in
Fig. 10.

a large amount of memory to store the tree would have a significant
effect. This result compares favorably to that of Connolly [2], es-
pecially since we are solving a more general problem than he is.

126 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-7, NO. 6. NOVEMBE R 1985

Fig 12 The ideal result of projecting a large number of views into the
OClW.

VI. CONCLUSIONS

This correspondence has described a means of constructing a
spatial representation of the works ce of a robot. An Octree i s used
as the data structure for the representation. I t provides a relatively
compact representation, allows fast access to information, and en-
ables largc homogeneous parts of the workspace to be ignored. The
representation i s constructed from successive images taken by a
camera mounted on the wrist of a manipulator. The manipulator
moves about while performing i t s task, giving rise to a sequence
of images taken from different, but known, positions. A series of
cones. whose apexes are at the center of focus of the camera lens,
and whose cross sections are defined by the boundaries of the ob-
jects in the image, are projected into the octree. They describe the
possible positions of the objects in the space and delineate the re-
gions that are empty. When an object i s seen from several view-
points, the intersections of the cones constrain the position and size
of the object. After several views have been processed, the object
begins to resemble its true shape. At al l times, the spatial repre-
sentation contains the best guess at the true situation in the world,
with uncertainties in position and shape explicitly represented.

The purpose of constructing this representation i s not so much
to recognize objects as to describe the volumes in the workspace
that are occupied and those that are empty. This enables trajectory
planning to be carried out, and also provides a means of spatially
indexing objects without needing to represent the objects at an ex-
tremely fine resolution.

The algorithm described in this correspondence differs from pre-
vious approaches in that it constructs a single octree to describe all
the objects in the workspace. It can accommodate views taken from
arbitrary viewpoints, and it maintains the octree at a fixed resolu-
tion that is independent of the resolution of the two-dimensional
images used in its construction. The construction algorithm i s also
new, and operates by projecting the cubes of the Octree into each
image, instead of projecting the images into the tree. This was
found to be more efficient, largely because the nodes of the octree
always project as convex objects and their shapes are known in ad-
vance.

REFERENCES

[11 P. G. Comba, “A procedure for detecting intersections of three-di-
mensional objects,” J. Ass. Compur Much., vol. 15, no. 3, pp. 354-
366, 1968.

121 C. 1. Connolly, “Cumulative generation of octree models from range
data,” in Proc. Inr. Conf Robot., Atlanta, GA, Mar. 1984, pp. 25-32.

131 D. A. Field and A. P. Morgan, “A quick method for determinmg
whether a second-degree polynomial has solutions in a given box,”
IEEE Compur Graph. Appli., vol. 2, pp 65-68, May 1982. (Also,
General Motors Res. Lab. Rep. GMR-3656, Apr. 1981.)

[4] C. L. Jackins and S. L. Tanimoto, “Octrees and their use in repre-
senting 3D objects,” Comput. Graph. Image Processing, vol. 14, pp.
249-210, 1980.

IS] W. N. Martin and1. K. Aggarwal, “Volumetric descriptions of objects
from multiple views,” IEEE Trans. Pattern Anal. Machine Intell., vol.
PAMI-5, pp. 150-158, Mar. 1983.

[6] D. Meagher,“Octree encoding: a new technique for the representation,
manipulation and display of a;bitrary 3D &&ts by computer,” Dep.
Elec. Syst. Eng., Rensselaer Polytech. Inst., Troy, NY, Tech Rep. TR-

T. Pavlidis, Algorithms for Graphics and Image Processing.
Rockville, MD: Computer Science Press, 1982, Ch. 15.
S. N. Srihari, “Representation of three-dimensional digital images,”
ACM Comput. Surveys, vol. 13, no. 4, pp. 399-424, Dec. 1981.
S. A. Underwood and C. L. Coates, “Visual learnina and recoanition

IPL-Ill, 1980.

by computer,” Inform. Syst. Res. Lab., Univ. Texas, Austin,-Tech.
Rep. TR123, 1972.

0162-8828/85/1100 -0726$01.00 0 1985 IEEE

